Решения заданий 2-го этапа Всероссийской олимпиады школьников по химии 2020 – 21 учебный год

9 класс

Задача 9.1 (Всероссийская олимпиада школьников по химии 2019–2020 уч. г. Муниципальный этап. 9 класс. Московская область)

Через порцию 25%-ного раствора гидроксида натрия массой 960 г пропустили углекислый газ объёмом 89,6 л (н.у.). Вычислите массовые доли солей в растворе после реакции.

Решение:

```
m(NaOH) = 960\Gamma \cdot 0,25 = 240\Gamma

n(NaOH) = 240\Gamma / 40\Gamma / MOЛЬ = 6 МОЛЬ

n(CO2) = 89,6\pi / 22,4\pi / MOЛЬ = 4 МОЛЬ
```

При взаимодействии с углекислым газом возможно образование кислой или средней солив зависимости от соотношения молей участников реакции. Обе соли растворимы.

(1:1)
$$NaOH + CO_2 = NaHCO_3 n(NaOH) = n(CO_2) = n(NaHCO_3)$$

(2:1)
$$2NaOH + CO_2 = Na_2CO_3 + H_2O n(Na_2CO_3) = n(CO_2) = \frac{1}{2} n(NaOH)$$

Вначале прореагируют углекислый газ и щелочь в соотношении 1:1.

Образуется гидрокарбонат натрия количеством 4 моль и останется 2 моль щёлочи. Эта щелочь взаимодействует с 2 моль кислой соли с образованием 2 моль средней.

$$NaHCO_3 + NaOH = Na_2CO_3 + H_2O$$

Ещё 2 моль кислой соли останется в растворе. В результате получено 2 моль средней соли и 2 моль кислой

```
\begin{array}{l} m(NaHCO_3)=2\ \text{моль}\cdot 84 \Gamma/\text{моль}=168\ \Gamma\\ m(Na_2CO_3)=2\ \text{моль}\cdot 106\ \Gamma/\text{моль}=212\ \Gamma/\text{моль}\\ m(p-pa)=m(p-pa\ NaOH)+m(CO_2)=960\ \Gamma+44 \Gamma/\text{моль}\cdot 4\ \text{моль}=1136\ \Gamma\\ \omega\ (NaHCO_3)=168 \Gamma:1136 \Gamma=\cdot\ 100\%=14,8\%,\\ \omega\ (Na_2CO_3)=212 \Gamma:1136 \Gamma=\cdot\ 100\%=18,7\% \end{array}
```

Критерии оценивания:

Элемент оценивания	Баллы
Расчёт массы щелочи	1
Расчёт количества вещества щелочи	1
Расчёт количества вещества углекислого газа	1
Уравнение образование кислой соли	1
Уравнение образования средней соли (любое из приведенных)	1
Вывод о количествах образовавшихся солей	2
Расчет массы раствора	1
Расчет массовой доли каждой соли по 1 баллу	2x1 = 2
	Всего 10 баллов.

Задача 9.2 (Кузнецова Н.Е., Левкин А.Н. Задачник по химии для учащихся 9 класса общеобразовательных учреждений. – М.: Вентана-Граф, 2006)

Навеску смеси порошков магния и карбоната магния прокалили на воздухе. После прокаливания, охлаждения и взвешивания навески было установлено, что ее масса не изменилась. Вычислите массовые доли исходных веществ в навеске.

Решение (Попова Е.А.)

```
2Mg + O_2 = 2MgO
MgCO_3 = MgO + CO_2
Пусть n (Mg) = x моль, a n (MgCO_3) = y моль, тогда m (Mg) = 24x (\Gamma), a m (MgCO_3) = 84y (\Gamma).
По условию m (O_2) = m(CO_2), следовательно, 16x = 44y, x = 2,75y
```

$$\omega_{Mg} = \frac{24x}{24x + 84y} = \frac{24 \cdot 2,75y}{24 \cdot 2,75y + 84y} = 0,44$$
 или 44%

$$\omega(MgCO_3) = 56\%$$

Система оценивания

Уравнения реакций 2 х 3 баллов

Расчёт массовых долей исходных веществ в навеске 4 балла

Возможны другие варианты решения, не искажающие смысла

Всего 10 баллов.

Задание 9.3 (Конькова Т.В.)

Для получения никеля используется реакция восстановления оксида никеля (II) углеродом. Теплота, необходимая для этой реакции обеспечивается горением углерода в атмосфере кислорода. Масса углерода, которая потребовалась для получения 17,7 г никеля, составила 4,785 г. Теплоты образования CO₂ и CO равны 393,5 и 110,5 кДж/моль соответственно. Рассчитайте теплоту образования оксида никеля (II).

Решение

 $C+O_2=CO_2$ NiO + C = CO + Ni n Ni = 17,7/ 59 = 0,3 моль n C = 4,785/12 = 0,39875 моль n (C) (для второй реакции) = n Ni = 0,3 моль n (C) для первой = 0,39875-0,3 = 0,09875 моль Эн₁ = 0,09875*393,5 = 38,858 кДж Эн₂ = -Эн₁= -38,858 кДж Q₂ = Эн₂/n Ni = -38,858/0,3 = -129,53 кДж/моль -129,5 = Q CO - Q NiO Q NiO = Q CO -Q₂ = 110,5+129,5 = 240 кДж/моль

Система оценивания

Уравнения реакций 2 х 1,5 3 балла Расчет количества вещества никеля и углерода 2 балла Расчет теплоты образования оксида никеля (II). 5 баллов

Возможны другие варианты решения, не искажающие смысла

Всего – 10 баллов.

Задача 9.4 (Попова Е.А)

Относительная молекулярная масса газа равна 26. Известно, что это вещество содержит водород и углерод -7.7% и 92,3% по массе соответственно. Какую формулу имеет этот газ, как он называется и где применяется.

Решение:

Элемент ответа	Баллы
Формула газа	2 балла
Вывод формулу газа – C_2H_2	
$m(C) = 26 \cdot 0,923 = 24 \Gamma, n(C) = 2$ моль	
$m(H) = 2 \Gamma, n(C) = 2$ моль	4 балла

 Газ – ацетилен
 2 балла

 Резка и сварка металлов
 2 балла

Возможны другие варианты решения, не искажающие смысла

Всего 10 баллов

Задача 9.5 (Всероссийская олимпиада школьников по химии 2019–2020 уч. г. Муниципальный этап. 9 класс. Республика Крым)

Юный лаборант (студент-химик) для проведения лабораторной работы приготовил концентрированные растворы щелочи (30%-ный раствор гидроксида натрия) и соляной кислоты (1:1), а также серу, бром, алюминий и кремний. Подумав, он решил сам провести эксперимент. Сначала он добавил небольшие количества твердых, выше перечисленных, веществ к раствору концентрированной щелочи. При этом получилось 4 прозрачных раствора, и в двух пробирках он наблюдал выделение газа. В полученные растворы он по каплям добавил приготовленный раствор соляной кислоты и наблюдал в одной пробирке резкое изменение цвета, в остальных трех — выпадение осадка, причем в одной пробирке при дальнейшем прибавлении кислоты осадок растворился.

Напишите уравнения проведенных реакций.

Укажите, в какой пробирке, какие признаки реакций наблюдались (цвет осадка, его состояние, в каких пробирках выделился газ).

Решение:

1) В пробирке с алюминием выделился газ

 $Al + NaOH + 3H_2O = Na[Al(OH)_4] + 1,5H_2$ (коэффициенты можно увеличить в 2 раза).

В пробирке с кремнием выделился газ

$$Si + 2NaOH + H_2O = Na_2SiO_3 + 2H_2$$
 или

$$Si + 4NaOH = Na_4SiO_4 + 2H_2$$

$$3S + 6NaOH = 2Na_2S + Na_2SO_3 + 3H_2O$$

$$Br_2 + 2NaOH = NaBr + NaBrO + H_2O$$

2) При прибавлении по каплям соляной кислоты в пробирке наблюдалось выпадение студенистого осадка, растворяющегося в избытке соляной кислоты

$$Na[Al(OH)_4] + HCl = NaCl + Al(OH)_3 + H_2O -$$

$$Al(OH)_3 + 3 HCl = AlCl_3 + 3H_2O$$

В пробирке гелеобразный белый осадок $Na_2SiO_3 + 2HCl = 2KCl + H_2SiO_3$

В пробирке желтый кристаллический осадок

$$2Na_2S + Na_2SO_3 + 6HCl = 3S + 6NaCl + 3H_2O$$

При образовании

брома цвет становится коричневым

 $NaBr + NaBrO + 2HCl = Br_2 + 2NaCl + H_2O$

Критерии оценивания:

Элемент ответа	Баллы
1. Каждое уравнение по 1 баллу	9x1 = 9
Уравнение Na[Al(OH)4] + 4HCl = NaCl + AlCl ₃ + 4H ₂ O засчитываем, Но ставим 0,3 балла за невнимательное	0,3
прочтение условия задачи.	
При написании 2-х возможных уравнений к одной реакции,	
засчитываем только одно.	
2. Признаки реакций по 0,2 балла (выделение газа, выпадение осадка, его состояние)	6x0,2 = 1,2
осадка, его состояние)	D 10.7
	Всего 10 баллов.

Общее количество баллов – 50.

Допускаются другие варианты решения задач, не искажающие смысл.

При отправке детей на региональный этап олимпиады не забудьте про экспериментальный тур, где требуется защищающий одежду XAЛAТ!