Задания 2-го этапа всероссийской олимпиады школьников по химии 2018 – 19 учебный год

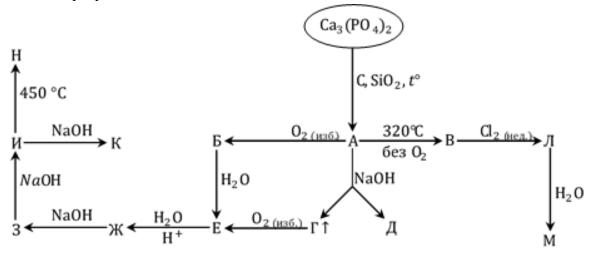
10 класс

Задача 10.1

"Газ" для зажигалок представляет собой смесь пропана и бутана. При сгорании 3,5 г такой смеси образуется 5,77 л (измерено при 20°C и 1 атм) углекислого газа. Найдите мольную долю бутана в смеси.

(10 баллов)

Задача 10.2


Чудотворный носитель света

При восстановлении фосфата кальция углём с добавлением оксида кремния отгоняют пары простого вещества \mathbf{A} (реакция 1), которые конденсируются в виде желтоватых кристаллов. \mathbf{A} способно самовоспламеняться на воздухе, сгорая до крайне гигроскопичного \mathbf{b} (реакция 2). При нагревании \mathbf{A} без доступа воздуха образуется красное вещество \mathbf{b} (реакция 3). Кипячение \mathbf{A} с концентрированным раствором гидроксида натрия приводит к диспропорционированию с выделением газа $\mathbf{\Gamma}$ и образованию в растворе соли $\mathbf{\mu}$ (реакция 4). Соль $\mathbf{\mu}$ является сильным восстановителем.

Газ Γ легко воспламеняется при поджигании на воздухе, образуя кислоту \mathbf{E} (реакция 5) при растворении которой в воде образуется известная каждому школьнику кислота \mathbf{K} (реакция 6). Кислота \mathbf{E} образуется также, если оставить \mathbf{b} на влажном воздухе (реакция 7). При нейтрализации \mathbf{K} раствором гидроксид натрия, последовательно образует соли $\mathbf{3}$, \mathbf{M} и \mathbf{K} (реакции $\mathbf{8} - \mathbf{10}$).

При хлорировании ${\bf B}$ в недостатке хлора можно получить жидкость ${\bf J}$ (реакция 11), при гидролизе которой образуется кислота ${\bf M}$ (реакция 12).

При пиролизе **И** образуется средняя соль **Н** еще одной кислоты (реакция 13), содержащей мостиковый (соединенный с двумя атомами фосфора) атом кислорода. Все перечисленные вещества **А** - **H** содержат элемент **X**. Ниже приведена схема описанных превращений:

Определите элемент X и вещества A-H. Напишите уравнения реакций всех описанных превращений. Предложите структурные формулы кислот \mathcal{K} , M, а также кислот, соответствующих солям \mathcal{I} и H.

(10 баллов)

Задание 10.3

Среди ниже перечисленных веществ выберите по 4 вещества:

- а) твердые при 0°С;
- б) смешивающиеся с водой в любых отношениях;
- в) имеющие плотность больше 1 г/см³ при нормальных условиях;
- г) обладающие характерным запахом;
- д) молекулы которых содержат 4 и более атомов углерода.

Вещества: 1) бензол 2) этиловый спирт 3) тяжелая вода 4) ртуть 5) этилен 6) серная кислота 7) полиэтилен 8) бутан 9) уксусная кислота 10) диэтиловый эфир.

Помните: при ответе на каждый пункт надо указать не более 4 веществ.

(10 баллов)

Задача 10.4

На весах находятся в равновесии стаканы, содержащие растворы нитрата серебра и сульфата ртути (II) массой по 340 г каждый с массовой долей солей 20 % и 15 % соответственно. В раствор с раствором нитрата серебра поместили медную пластинку и извлекли её из раствора, когда массовая доля нитрата серебра стала равной 10,49 %. Во второй сосуд поместили железную пластинку массой 29,8 г и выдерживали до тех пор, пока массы растворов в обоих стаканах не стали равными. Рассчитайте массовую долю сульфата ртути (II) в конечном растворе и массу железной пластинки после реакции.

(10 баллов)

Задача 10.5

Даны четыре пробирки с растворами следующих веществ: азотная кислота, хлорид натрия, фосфат натрия, нитрат серебра. В какой пробирке, какой раствор находится, неизвестно, но установлено, что: 1) при сливании растворов 2-ой и 4-ой пробирок получается осадок, не растворяющийся при добавлении раствора из 1-ой пробирки; 2) при сливании растворов из 2-ой и 3-ей пробирки получается осадок, растворяющийся при добавлении раствора из 1-ой пробирки. Определите, какие растворы содержатся в пробирках 1, 2, 3 и 4. Напишите уравнения всех упоминаемых в задаче реакций.

(10 баллов)

Решения заданий 2-го этапа Всероссийской олимпиады школьников по химии 2018 — 19 учебный год

10 класс

Задача 10.1 (Муниципальный этап ВОШХ СОРИПКРО, 2017-18 учебный год)

"Газ" для зажигалок представляет собой смесь пропана и бутана. При сгорании 3,5 г такой смеси образуется 5,77 л (измерено при 20° С и 1 атм) углекислого газа. Найдите мольную долю бутана в смеси.

Решение:

Рассчитаем количество углекислого газа: 5,77/22,4*273/293=0,24 моль (2 балла)

Пусть в исходной смеси было X моль пропана и Y моль бутана. Тогда можно записать следующие уравнения:

 $C_3H_8 + O_2 \rightarrow 3 CO_2 + 4 H_2O$ (2 балла) $2 C_4H_{10} + O_2 \rightarrow 8 CO_2 + 10 H_2O$ (2 балла)

44X + 58Y = 3.5

3X + 4Y = 0.24

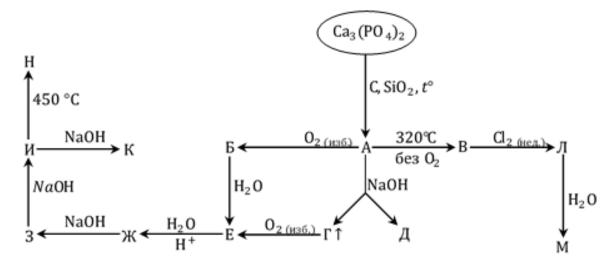
Решая эту систему получаем X=0.04моль Y=0.03моль (2 балла)

Тогда мольная доля бутана 0.03/(0.03+0.04)=3/7=0.43. (2 балла)

Всего 10 баллов.

Задача 10.2 (автор Кузнецов Д.В. (с изменениями, источник vserosolymp.rudn.ru)

Чудотворный носитель света


При восстановлении фосфата кальция углём с добавлением оксида кремния отгоняют пары простого вещества \mathbf{A} (реакция 1), которые конденсируются в виде желтоватых кристаллов. \mathbf{A} способно самовоспламеняться на воздухе, сгорая до крайне гигроскопичного \mathbf{b} (реакция 2). При нагревании \mathbf{A} без доступа воздуха образуется красное вещество \mathbf{b} (реакция 3). Кипячение \mathbf{A} с концентрированным раствором гидроксида натрия приводит к диспропорционированию с выделением газа $\mathbf{\Gamma}$ и образованию в растворе соли $\mathbf{\mu}$ (реакция 4). Соль $\mathbf{\mu}$ является сильным восстановителем.

Газ Γ легко воспламеняется при поджигании на воздухе, образуя кислоту \mathbf{E} (реакция 5) при растворении которой в воде образуется известная каждому школьнику кислота \mathbf{K} (реакция 6). Кислота \mathbf{E} образуется также, если оставить \mathbf{b} на влажном воздухе (реакция 7). При нейтрализации \mathbf{K} раствором гидроксид натрия, последовательно образует соли $\mathbf{3}$, \mathbf{M} и \mathbf{K} (реакции $\mathbf{8} - \mathbf{10}$).

При хлорировании $\bf B$ в недостатке хлора можно получить жидкость $\bf J$ (реакция 11), при гидролизе которой образуется кислота $\bf M$ (реакция 12).

При пиролизе **И** образуется средняя соль **Н** еще одной кислоты (реакция 13), содержащей мостиковый (соединенный с двумя атомами фосфора) атом кислорода.

Все перечисленные вещества ${\bf A}$ - ${\bf H}$ содержат элемент ${\bf X}$. Ниже приведена схема описанных превращений:

Определите элемент X и вещества A - H. Напишите уравнения реакций всех описанных превращений. Предложите структурные формулы кислот \mathcal{K} , M, а также кислот, соответствующих солям \mathcal{I} и H.

Решение:

Уголь используют в промышленности в качестве восстановителя. В реакции также участвуют оксид кремния и фосфат кальция. Гипотетически элементом \mathbf{X} могут быть кальций, фосфор и кремний. Однако кальций не может вступать в указанных условиях в реакцию диспропорционирования (реакция 4). Указание, что соль Д является сильным восстановителем, образование \mathbf{J} в недостатке хлора указывает на устойчивость соединений в промежуточных степенях окисления (с.о.), что не характерно для кремния. Таким образом, элемент \mathbf{X} – это фосфор.

Для фосфора известно несколько аллотропных модификаций устойчивых при невысоких давлениях: белый фосфор, который имеет молекулярное строение, а также красный и черный, имеющие полимерное строение. В условиях реакции восстановления углем образуется пары фосфора и из паров осаждается молекулярный белый фосфор Р₄:

1)
$$2Ca_3(PO_4)_2 + 10C + 6SiO_2 \xrightarrow{t} P_4 + 6CaSiO_3 + 10CO$$

$$P_4 + 50_2 \rightarrow 2P_2O_5$$

При нагревании белый фосфор переходит в красный, имеющий полимерное строение:

3)
$$P_4 \rightarrow 4P$$

P₄ + 3NaOH + 3H₂O
$$\rightarrow$$
 PH₃ \uparrow +3NaH₂PO₂

При горении фосфина фосфор окисляется до высшей с.о. «+5», которой соответствует образующаяся при недостатке воды метафосфорная кислота:

5)
$$PH_3 + 2O_2 \rightarrow HPO_3 + H_2O$$

6)
$$HPO_3 + H_2O \rightarrow H_3PO_4$$

7)
$$P_2O_5 + H_2O \rightarrow 2 HPO_3$$

NaH₂PO₄ + NaOH
$$\rightarrow$$
 Na₂HPO₄ + H₂O

9)
$$H_3PO_4 + NaOH \rightarrow NaH_2PO_4 + H_2O$$

$$10) Na_2HPO_4 + NaOH \rightarrow Na_3PO_4 + H_2O$$
 $11) 2P + 3Cl_2 \rightarrow 2PCl_3$
 $12) PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl$
 $13) 2Na_2HPO_4 \xrightarrow{t} Na_4P_2O_7 + H_2O$

Структурные формулы кислот:

Система оценивания:

Элемент X1 баллВещества A – Н по 0,3 балла3,9 баллаУравнения реакций по 0,3 балла3,9 баллаСтруктурные формулы кислот по 0,3 балла1,2 баллаВсего10 баллов

Задача 10.3 (Муниципальный этап ВОШХ СОРИПКРО, 2017-18 учебный год)

Среди ниже перечисленных веществ выберите по 4 вещества:

- а) твердые при 0°С
- б) смешивающиеся с водой в любых отношениях
- в) имеющие плотность больше 1г/см³ при нормальных условиях
- г) обладающие характерным запахом
- д) молекулы которых содержат 4 и более атомов углерода.

Вещества: 1) бензол 2) этиловый спирт 3) тяжелая вода 4) ртуть 5) этилен 6) серная кислота 7) полиэтилен 8) бутан 9) уксусная кислота 10) диэтиловый эфир.

Помните: при ответе на каждый пункт надо указать не более 4 веществ.

Решение:

- а) твердые при 0°C: 1) бензол 2) тяжелая вода 3) полиэтилен 4) уксусная кислота.
- б) смешивающиеся с водой в любых отношениях: 1) этиловый спирт 2) тяжелая вода 3) серная кислота 4) уксусная кислота
- в) имеющие плотность больше 1г/см³ при нормальных условиях : 1) тяжелая вода 2) ртуть
- 3) серная кислота 4) уксусная кислота
- г) обладающие характерным запахом: 1) бензол 2) этиловый спирт 3) уксусная кислота 4) диэтиловый эфир.

д) молекулы которых содержат 4 и более атомов углерода: 1) бензол 2) полиэтилен 3) бутан 4) диэтиловый эфир.

За каждое правильно указанное вещество по 0,5 балла.

Если по какому-либо пункту указано более четырёх веществ - этот пункт не оценивать.

Всего 10 баллов.

Задача 10.4 (Врублевский А.И. Химия. Анализ, синтез и расчетные задачи для подготовки к ЕГЭ. – Минск: Попурри, 2018)

На весах находятся в равновесии стаканы, содержащие растворы нитрата серебра и сульфата ртути (II) массой по 340 грамм каждый с массовой долей солей 20 % и 15 % соответственно. В раствор с раствором нитрата серебра поместили медную пластинку и извлекли её из раствора, когда массовая доля нитрата серебра стала равной 10,49 %. Во второй сосуд поместили железную пластинку массой 29,8 грамм и выдерживали до тех пор, пока массы растворов в обоих стаканах не стали равными. Рассчитайте массовую долю сульфата ртути (II) в конечном растворе и массу железной пластинки после реакции.

Решение: (Е.А. Попова)

$$2AgNO_3 + Cu = Cu(NO_3)_2 + 2Ag$$
 (1)
 $HgSO_4 + Fe = FeSO_4 + Hg$ (2)
 $m (AgNO_3) = 68 \Gamma$
 $n (AgNO_3) = 0.4$ моль

Определим массу раствора после реакции (1) (m) и количество вещества нитрата серебра, вступившего в реакцию (2x моль):

$$0,1049 = \frac{68 - 170 \cdot 2x}{340 - 340 \cdot x + 188x}$$

```
X=0,1 моль m'_{p-pa} (AgNO<sub>3</sub>) = 340-152x=324,8~\Gamma m (HgSO<sub>4</sub>) = 51~\Gamma n (HgSO<sub>4</sub>) = 0,17 моль Найдем количество вещества HgSO<sub>4</sub>, вступившего в реакцию (2) – (приняв за у моль) 324,8=340-297y+152y y=0,105 моль m_{\Pi\Pi}=29,8-56y+201y=45~\Gamma \omega(HgSO_4)_{nocnepeakuu(2)}=\frac{51-297~y}{324,8} • 100\%=6,1\%
```

Система оценивания:

За каждое уравнение реакции по 1 баллу		2 балла
Определение массы и количества веществ HgSO ₄ и AgNO ₃		2 балла
Определение количества вещества AgNO ₃ , вступившего в реакцию (1)		2 балла
Определение массы раствора AgNO ₃ , после реакции (1)		1 балл
Определение количества вещества HgSO ₄ , вступившего в реакцию (2)		1 балл
Определение массы железной пластинки после реакции (2)		1 балл
Определение массовой доли HgSO ₄ в новом растворе		1 балл
	Reero	10 баппов

Задача 10.5 (источник file:///C:/Users/1/Desktop/zadachi s resheniyami 9-2016.pdf)

Даны четыре пробирки с растворами следующих веществ: азотная кислота, хлорид натрия, фосфат натрия, нитрат серебра. В какой пробирке, какой раствор находится, неизвестно, но установлено, что: 1) при сливании растворов 2-ой и 4-ой пробирок получается осадок, не растворяющийся при добавлении раствора из 1-ой пробирки; 2) при сливании растворов из 2-ой и 3-ей пробирки получается осадок, растворяющийся при добавлении раствора из 1-ой пробирки. Определите, какие растворы содержатся в пробирках 1, 2, 3 и 4. Напишите уравнения всех упоминаемых в задаче реакций.

Решение:

	HNO ₃	NaCl	Na ₃ PO ₄	AgNO ₃
HNO_3	_	+↑		1
NaCl	+↑	_	-	+
Na ₃ PO ₄	_	_		+
AgNO ₃	_	+↓	+↓	_

1. Т.к. из четырѐх пробирок только $AgNO_3$ реагирует с двумя пробирками с образованием осадков, то раствор $AgNO_3$ находится в пробирке № 2, а растворы NaCl и Na_3PO_4 в пробирках № 3 и № 4, неизвестно. (1 балл)

$$AgNO_3 + NaCl = AgCl \downarrow + NaNO_3$$
 (1 балл)

$$3AgNO_3 + Na_3PO_4 = Ag_3PO_4 \downarrow + 3NaNO_3$$
 (1 балл)
 $Ag_3PO_4 - жèлтый осадок$ (1 балл)

- 2. Тогда для раствора азотной кислоты остается только пробирка № 1 (1 балл)
- 3. Т.к. осадок, образованный при сливании растворов 2-ой и 4-ой пробирок, не

растворяется при добавлении HNO_3 , то этим осадком является AgCl, который образовался при сливании растворов $AgNO_3$ ($Noldsymbol{N}_2$) и NaCl. Соответственно, в пробирке

 $AgCl + HNO_3 \neq$

4. Т.к. осадок, образованный при сливании растворов 2-ой и 3-ей пробирок, растворяется при добавлении HNO_3 , то этим осадком является Ag_3PO_4 , который образовался при сливании растворов $AgNO_3$ ($Noldsymbol{Noldsymbol{O}}$) и Na_3PO_4 . Соответственно, в пробирке $Noldsymbol{Noldsymbol{O}}$ 3 будет находиться Na_3PO_4 . (1 балл) $Ag_3PO_4 + 3HNO_3 = 3AgNO_3 + H_3PO_4$ (1 балл)

5. Для подтверждения нахождения HNO₃ в пробирке № 1 и NaCl в пробирке № 4 сольèм их. Будем наблюдать выделение газа жèлто-зелèного цвета.

$$6$$
NaCl + 8 HNO₃ = 6 NaNO₃ + 2 NO \uparrow + 3 Cl₂ \uparrow + 4 H₂O (1 балл)

Всего 10 баллов.

Общее количество баллов – 50. Допускаются другие варианты решения задач, не искажающие смысл. ВНИМАНИЕ! Уважаемые коллеги, просим выслать отчет (по классам) о проведении II (муниципального) этапа Всероссийской олимпиады на электронный адрес <u>himikoff@yandex.ru</u> не позднее чем через 2 дня после проведения олимпиады по ФОРМЕ:

- 1) количество учащихся,
- 2) средний балл, полученный за каждую задачу,
- 3) замечания и предложения по условиям и решениям задач,
- 4) списки победителей и призеров,
- 5) тексты задач1 (школьного) Всероссийской этапа олимпиады.

При отправке детей на региональный этап олимпиады не забудьте про экспериментальный тур, где требуется защищающий одежду ХАЛАТ!

Региональный этап состоится по адресу: улица Каманина, д. 18/38, в центре для одаренных детей «Платформа 33»