7 класс

7.1. Невидимая преграда

Небольшая шайба скользит по гладкому льду с постоянной скоростью V = 2 м/с. На пути шайбы встречается преграда, ударившись о которую шайба с той же скоростью движется в обратном направлении. На стробоскопической фотографии запечатлены четыре последовательных положения A, B, C, D шайбы, но преграда оказалась невидимой.

Определите по фотографии, на каком расстоянии от точки A находилась преграданевидимка, если интервал времени между вспышками стробоскопа был равен t=0,1 с. Для измерения расстояний по фотографии воспользуйтесь линейкой.

Возможное решение.

С помощью линейки выполним измерения расстояний AB, BC и CD между положениями шайбы на фотографии. Убеждаемся, что AB = BC, значит положения шайбы A, B и C соответствуют движению шайбы к преграде, а в D запечатлена шайба уже после столкновения. За время между вспышками стробоскопа шайба пролетает расстояние

$$L = Vt$$

Отношение этого расстояния к длине отрезка AB на фотографии дает масштаб уменьшения:

$$M = \frac{Vt}{AR}$$

Если бы преграды не было, шайба оказалась бы в точке D^* такой что $CD^* = AB$:

Преграда находится в точке E, делящей отрезок DD^* пополам. Измерим расстояние AE по фотографии и рассчитаем расстояние от точки A до преграды-невидимки:

$$S = AE \cdot M = \frac{AE}{AB}Vt$$

Выполнены измерения расстояний по фотографии	.1
Определено, что после удара шайба в точке D	.2
Определен масштаб на фотографии	2
Найдено положение преграды E на фотографии	.3
Найдено реальное расстояние S до преграды	2

7.2. На треть – четверть.

На первую треть пути автомобиль затратил четверть всего времени движения, а оставшееся расстояние он проехал со скоростью 40 км/ч. Какова средняя скорость автомобиля?

Возможное решение.

Пусть S — весь путь, который проехал автомобиль, t — затраченное на этот путь время. На оставшееся расстояние

$$S_{\text{OCT}} = S - \frac{1}{3}S = \frac{2}{3}S \tag{1}$$

автомобиль затратил оставшееся время

$$t_{\text{OCT}} = t - \frac{1}{4}t = \frac{3}{4}t\tag{2}$$

Поскольку он двигался со скоростью V = 40 км/ч, то

$$S_{\text{oct}} = V \cdot t_{\text{oct}}$$

Подставляя в последнее равенство путь (1) и время (2) получим:

$$\frac{2}{3}S = V \cdot \frac{3}{4}t\tag{3}$$

Отсюда средняя скорость на всём пути

$$V_{\rm cp} = \frac{S}{t} = \frac{9}{8}V = \frac{9 \cdot 40}{8} = 45 \text{ km/y}$$

Примерная разбалловка

7.3. Тонна и баррель.

В 2016 году Россия экспортировала 396 миллионов тонн нефти, а в 2017 году экспорт нефти составил 2984 миллионов баррелей. Плотность экспортной нефтяной смеси примерно $865~\rm kr/m^3$, в одном барреле $159~\rm nutpob$. Определите, насколько изменился экспорт нефти.

Возможное решение.

Обозначим

 $m = 396 \cdot 10^9 \text{ K}$

 $N = 2984 \cdot 10^6$ баррелей,

 $V = 159 \, \text{л},$

 $\rho = 0.865 \text{ кг/л}.$

Рассчитаем массу экспортированной в 2017 году нефти:

$$M = \rho V N = 410.4 \cdot 10^9 \text{ kg}$$

Экспорт нефти в 2017 году увеличился на 14,4 миллионов тонн.

Примерная разбалловка

7.4. Разные градусы.

На фотографии представлено изображение термометра, имеющего две шкалы — по Цельсию и по Фаренгейту. Определите, сколько градусов по Фаренгейту соответствуют 0°С и сколько градусов по Цельсию соответствуют 0°F. При какой температуре оба термометра покажут одно и то же число?

Возможное решение.

Определим цену деления термометров:

- на шкале Цельсия цена деления 1°C,
- на шкале Фаренгейта цена деления 2°F.

Прикладывая линейку к центру термометра и делению соответствующей шкалы находим:

0°С соответствуют 32°F

0°F соответствуют -18°С

При температуре -40°C или -40°F оба термометра покажут число -40.

Правильными следует считать ответы, возможно отличающиеся от предложенных не более чем на цену деления термометров.

Определена цена деления термометров	3
Найдено соответствие 0°C градусам по шкале Фаренгейта	
Найдено соответствие 0°F градусам по шкале Цельсия	2
Определена температура -40	3

8 класс

8.1. Одинаковые уровни

В U-образную трубку налили ртуть. Затем в правое колено добавили масло, в результате чего верхние уровни жидкостей в левом и правом коленах стали отличаться на $\Delta h=13\,$ мм. Какой высоты столб воды надо добавить в U-образную трубку, чтобы верхние уровни жидкостей вновь стали одинаковыми? Плотность ртути $\rho_{pr}=13,6\,$ г/см³, плотность масла $\rho_{\rm M}=900\,$ кг/м³, плотность воды $\rho_{\rm B}=1000\,$ кг/м³.

Возможное решение.

Обозначим $h_{\rm M}$ - высота столба масла, добавленного в правое колено. Верхний уровень масла будет выше верхнего уровня ртути в левом колене, поскольку плотность ртути больше плотности масла. Давление в трубке на уровне, соответствующем нижнему уровню масла по закону Паскаля будет одинаково:

$$\rho_{\rm M}gh_{\rm M} = \rho_{\rm pT}g(h_{\rm M} - \Delta h) \tag{1}$$

Обозначим $h_{\rm B}$ - высоту столба воды, добавленной в левое колено. Теперь уровень ртути в правом колене будет выше чем в левом, поскольку плотность масла меньше плотности воды. Давление в трубке на уровне, соответствующем нижнему уровню воды в левом колене, будет одинаково:

$$\rho_{\rm B}gh_{\rm B} = \rho_{\rm M}gh_{\rm M} + \rho_{\rm DT}g(h_{\rm B} - h_{\rm M}) \tag{2}$$

Из уравнений (1) и(2) получим

$$h_{\scriptscriptstyle
m B} = \Delta h rac{
ho_{
m pt}}{
ho_{
m pt} -
ho_{
m B}} = 14$$
 мм

Примерная разбалловка

8.2. Стриж из Нижнего Новгорода.

Высокоскоростной «стриж» на пути из Москвы в Нижний Новгород обгоняет пассажирский поезд «нижегородец», стоящий на станции, за время $t_1 = 15$ с. На обратном пути поезда вновь встретились — на этот раз оба двигались. Машинист «стрижа» заметил, что он проехал мимо «нижегородца» теперь за время $t_2 = 10$ с. Во сколько раз скорость «стрижа» больше скорости «нижегородца»?

Возможное решение

Пусть L – длина «нижегородца», V_1 – его скорость, V_2 – скорость «стрижа». Тогда на пути из Москвы в Нижний Новгород $L=V_2t_1$. На обратном пути $L=(V_2+V_1)t_2$.

Приравнивая записанные выражения, находим

$$\frac{V_2}{V_1} = \frac{t_2}{t_1 - t_2} = 2.$$

Примерная разбалловка

Записано выражение для L в первом случае
Записано выражение для L на обратном пути
Найдено отношение скоростей

8.3. Теплообмен.

В лаборатории в красном сосуде находилось некоторое количество теплой жидкости, а в синем сосуде — 400 г такой же жидкости при меньшей температуре. После того как в сосуд с теплой жидкостью добавили 200 г холодной, температура в нём понизилась на 4°С. Затем в этот сосуд добавили остатки холодной жидкости из синего сосуда, температура теперь понизилась всего на 2°С. Сколько жидкости оказалось в красном сосуде?

Теплоемкостью сосудов, потерями жидкости и теплообменом с окружающей средой пренебречь.

Возможное решение

Обозначим:

с – удельная теплоёмкость жидкости

M — масса жидкости в красном сосуде

 $m = 200 \ \Gamma$ – масса жидкости в синем сосуде

 $t_{\rm k}$ — начальная температура жидкости в красном сосуде

t_c – начальная температура жидкости в синем сосуде

После добавления в красный сосуд 200 г холодной жидкости в нем установится температура t_1 :

$$cM(t_{\kappa} - t_1) = cm(t_1 - t_c)$$

После добавления в красный сосуд ещё 200 г холодной жидкости из синего сосуда, установится температура t_2 :

$$c(M+m)(t_1-t_2) = cm(t_2-t_c)$$

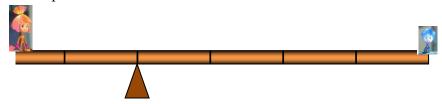
Поскольку $(t_{\rm K}-t_1)=4$ °C, а $(t_1-t_2)=2$ °C, получим:

$$4M = m(t_{\kappa} - 4 - t_c)$$

$$2(M+m)=m(t_{\kappa}-6-t_c)$$

Вычитая из первого равенства второе найдем

$$M=2m$$


Итого в красном сосуде окажется 800 г жидкости.

Записано выражение для t_1
Записано выражение для <i>t</i> ₂
Найдена масса жидкости2

8.4. Фиксики на рычаге.

Ремонтируя механизм старинных часов, Симка и Нолик оказались на рычаге длиной 6 см. Нолик опрометчиво устремился навстречу сестре. Симка знала, что вес Нолика в 3 раза меньше её собственного веса и ей удалось рассчитать, с какой скоростью она должна двинуться навстречу Нолику для поддержания равновесия.

На каком расстоянии от оси рычага фиксики встретились? Какова была масса рычага весов, если масса Нолика равна 5 г?

Возможное решение

Обозначим:

 $m_0 = 5$ г— масса Нолика

m — масса рычага, d = L/6 = 1 см — 1/6 часть рычага

Массу рычага найдем из условия равновесия в начальном состоянии:

$$3m_0 g 2d = mgd + m_0 g 4d (1)$$

Отсюда $m = 2m_0 = 10$ г.

Симка и Нолик встретятся левее оси рычага на расстоянии Z от оси:

$$(3m_0 + m_0)gZ = mgd (2)$$

Отсюда Z = d/2 = 0.5 см.

Записано условие равновесия на рычаге (1)	3
Найдена масса рычага	2
Записано условие равновесия (2)	3
Найдено место встречи фиксиков	2

9 класс

9.1. Часы отстают.

Время отправления электрички по расписанию 10.00. Когда Петя вбежал на платформу, на его часах было ровно 10.00, но мимо уже начал проезжать предпоследний вагон, который двигался мимо Пети в течении 10 с. Последний вагон прошел мимо за восемь секунд. Электричка отправилась вовремя и двигалась равноускоренно. На какое время отстают часы у Пети?

Возможное решение

Обозначим: L – длина вагона; V – скорость поезда в 10.00 по вашим часам;

a – ускорение поезда; $t_1 = 10$ с, $t_2 = 8$ с, t_0 – отставание часов.

При равноускоренном движении

$$V = at_0 \tag{1}$$

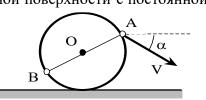
$$L = Vt_1 + \frac{at_1^2}{2} (2)$$

$$2L = V(t_1 + t_2) + \frac{a(t_1 + t_2)^2}{2}$$
 (3)

Подставим скорость поезда во второе и третье уравнения, длину вагона из второго уравнения в третье, сократим обе части полученного равенства на ускорение поезда:

$$2t_0t_1 + t_1^2 = t_0(t_1 + t_2) + \frac{(t_1 + t_2)^2}{2}$$

Отсюда


$$t_0 = \frac{t_1 t_2}{t_1 - t_2} - \frac{t_1 + t_2}{2} = 31 c$$

Примерная разбалловка

Записано уравнение (1)	4
Записаны законы движения (2) и (3)	.4
Найлено отставание часов	2

9.2. Скорости на диаметре.

Колесо катится без проскальзывания по горизонтальной поверхности с постоянной скоростью. В некоторый момент времени точка А, находящаяся на ободе колеса, имеет скорость V = 9 м/cотносительно земли, а вектор её скорости составляет с горизонтом угол $\alpha = 30^{\circ}$. Найдите скорость точки B, лежащей на противоположном конце диаметра.

Возможное решение

Скорость любой точки колеса складывается из скорости оси колеса \vec{V}_0 и скорости вращения относительно оси $\vec{V}_{\text{отн}}$:

$$\vec{V} = \vec{V}_0 + \vec{V}_{\text{OTH}} \tag{1}$$

Так как колесо катится без проскальзывания, то скорость точки, касающейся поверхности земли, равна нулю. Для этой точки относительная скорость направлена противоположно скорости оси, а значит, модули этих скоростей равны друг другу.

Применяя правило сложения скоростей (1) для точки А, построим параллелограмм, который в силу отмеченного равенства модулей скоростей является ромбом. Диагонали ромба взаимно перпендикулярны и делят углы при вершинах пополам. Тогда

$$V = 2V_{\text{отн}} \cos \alpha$$
, отсюда $V_{\text{отн}} = 3\sqrt{3} = 5.2 \frac{\text{м}}{c}$.

Скорость точки В определяется сложением скоростей оси колеса и скорости $\vec{V}_{B\text{отн}}$ вращения точки В относительно оси:

$$\vec{V}_B = \vec{V}_0 + \vec{V}_{BOTH}$$

Это будет тот же ромб с острым углом 60° , только искомая скорость \vec{V}_B будет короткой диагональю, а значит модуль её будет равен 5,2 м/с.

Примерная разбалловка

Записано правило сложения скоростей (1)	2
Показано, что $V_0 = V_{\text{отн}}$	3
Найдена скорость $V_{\text{отн}}$	2
Найдена скорость точки В	3

9.3. Фиксики на рычаге.

Ремонтируя механизм старинных часов, Симка и Нолик оказались на рычаге длиной 6 см. Нолик опрометчиво устремился навстречу сестре со скоростью 3 см/с. Симка знала, что вес Нолика в 3 раза меньше её собственного веса и ей удалось рассчитать, с какой скоростью она должна двинуться навстречу Нолику для поддержания равновесия.

С какой скоростью побежала Симка? На каком расстоянии от оси рычага фиксики встретились? Какова была масса рычага весов, если масса Нолика равна 5 г?

Возможное решение

Обозначим:

 $m_0 = 5$ г— масса Нолика

m – масса рычага, d = L/6 = 1 см – 1/6 часть рычага

x – расстояние от оси до Симки, y – расстояние от оси до Нолика

v — скорость Симки, $v_0 = -$ скорость Нолика

Запишем условие равновесия Симки и Нолика на рычаге:

$$3m_0gx = mgd + m_0gy \tag{1}$$

Когда Нолик пробежит расстояние Δy , Симка сместится на Δx :

$$3m_0g(x - \Delta x) = mgd + m_0g(y - \Delta y) \tag{2}$$

Выразим из (1) mgd, подставим в (2) и получим $3\Delta x = \Delta y$. Отсюда скорость Симки

$$v = \frac{\Delta x}{\Delta t} = \frac{1}{3} \frac{\Delta y}{\Delta t} = \frac{1}{3} v_0 = 1 \text{ cm/c}.$$

Массу рычага найдем из условия равновесия в начальном состоянии:

$$3m_0g2d = mgd + m_0g4d \tag{3}$$

Отсюда $m = 2m_0 = 10$ г.

Симка и Нолик встретятся левее оси рычага на расстоянии Z от оси:

$$(3m_0 + m_0)gZ = mgd$$

Отсюда Z = d/2 = 0.5 см.

Примерная разбалловка

Записано условие равновесия на рычаге (1) или (3)
Паилена скорость Симки
Найдена масса рычага

9.4. Теплообмен.

В лаборатории в красном сосуде находилось некоторое количество теплой жидкости, а в синем сосуде — такая же жидкость при меньшей температуре. После того как в сосуд с теплой жидкостью добавили m = 100 г холодной, температура в нём понизилась на 4°С. Затем в этот сосуд добавили опять 100 г холодной жидкости из синего сосуда, температура теперь понизилась всего на 2°С. Сколько холодной жидкости m_x надо ещё добавить в красный сосуд, чтобы температура в нём теперь понизилась на 1°С?

Теплоемкостью сосудов, потерями жидкости и теплообменом с окружающей средой пренебречь.

Возможное решение

Обозначим:

с – удельная теплоёмкость жидкости

М – начальная масса жидкости в красном сосуде

 $t_{\mbox{\tiny K}}$ – начальная температура жидкости в красном сосуде

 t_c — начальная температура жидкости в синем сосуде

Запишем уравнения теплового баланса:

$$cM(t_{\mathrm{K}}-t_{1})=cm(t_{1}-t_{c})$$

$$c(M+m)(t_{1}-t_{2})=cm(t_{2}-t_{c})$$

$$c(M+2m)(t_{2}-t_{3})=cm_{\chi}(t_{3}-t_{c})$$
 Поскольку $(t_{\mathrm{K}}-t_{1})=4^{\circ}\mathrm{C}, (t_{1}-t_{2})=2^{\circ}\mathrm{C},$ и $(t_{2}-t_{3})=1^{\circ}\mathrm{C},$ получим
$$4M=m(t_{\mathrm{K}}-t_{c}-4) \qquad \qquad (1)$$

$$2(M+m)=m(t_{\mathrm{K}}-t_{c}-6) \qquad (2)$$

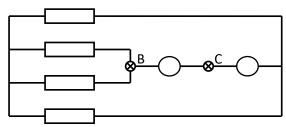
$$M+2m=m_{\chi}(t_{\mathrm{K}}-t_{c}-7) \qquad (3)$$

Вычитая из первого равенства второе найдем

$$M=2m=200$$
 г, тогда $t_{\scriptscriptstyle
m K}-t_{\scriptscriptstyle C}=12$ °C.

Из третьего равенства найдем $m_x = \frac{4}{5}m = 80$ г.

Записаны уравнения теплового баланса	4
Найдена разность температур красного и синего сосудов	2
Найдена начальная масса жидкости в красном сосуде	2
$egin{array}{cccccccccccccccccccccccccccccccccccc$	


9.5. Неопытный лаборант.

В распоряжении неопытного лаборанта Глюка было четыре резистора сопротивлением 1, 2, 3 и 4 Ом, идеальные амперметр и вольтметр. Глюк собрал цепь, схему которой показал на рисунке. Подключил цепь к клеммам B и C источника постоянного напряжения. Далее Глюк выполнил измерения и записал показания приборов в журнал: "5 делений" и "10 делений", забыв указать размерность.

Определите сопротивление каждого резистора в схеме, какой из приборов схемы является амперметром, а какой вольтметром, и чему были равны напряжение и сила тока, которые показали приборы.

Возможное решение

Вольтметр на рисунке между клеммами источника, правее - амперметр.

Если напряжение равно 5 B, тогда сила тока будет 10 A а общее сопротивление по закону Ома 0,5 Ом.

Если напряжение равно 10 B, тогда сила тока будет 5 A а общее сопротивление по закону Ома 2 Ом.

Средние резисторы соединены параллельно, тот который внизу, соединен параллельно с верхним. Применяя формулы для параллельного и последовательного соединения сопротивлений, находим (простым перебором вариантов) общее сопротивление схемы:

Например:

$$R_{\text{общ}} = \frac{4*1}{4+1} + \frac{2*3}{2+3} = \frac{4}{5} + \frac{6}{5} = 2 \text{ Ом}$$

Следовательно сопротивления в схеме сверху вниз 4, 2, 3, 1 Ом, или 2, 4, 1, 3 Ом. Возможны другие подобные варианты. Напряжение 10 В, сила тока 5 А.

Определено расположение приборов	1
Определен тип соединения резисторов	2
Найдено сопротивление резисторов	.4
Указана сила тока и напряжение	.2
Приведено несколько вариантов	. 1

10 класс

10.1. Игра в мяч.

Мяч, брошенный одним игроком другому под некоторым углом к горизонту, через 1 с достиг высшей точки траектории. Начальная скорость мяча была 16 м/с. На каком расстоянии друг от друга находились игроки?

Возможное решение

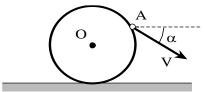
Проекция скорости мяча на вертикальное направление в высшей точке траектории через время t = 1 с равна нулю:

$$V_{\nu} = V_{0\nu} - gt = 0$$

Отсюда проекция начальной скорости $V_{0y} = 10 \text{ м/c}$, тогда проекция начальной скорости на горизонтальное направление будет равна

$$V_{0x} = \sqrt{{V_0}^2 - {V_{0y}}^2} = 12,5 \text{ m/c}$$

Расстояние между игроками


$$L = V_x 2t = 25 \text{ M}.$$

Примерная разбалловка

Найдена проекция V_{0y}	3
Найдена проекция V_{0x}	3
Найдено расстояние между игроками	.4

10.2. Грязное колесо.

Колесо диаметром d=0.6 м катится без проскальзывания по горизонтальной поверхности с постоянной скоростью. В некоторый момент времени комочек грязи массой m=9 г в точке, находящейся на ободе колеса, имеет скорость V=9 м/с относительно земли, а вектор его скорости составляет с горизонтом угол $\alpha=30^\circ$. Какова сила, удерживающая комочек на ободе колеса?

Возможное решение

Скорость любой точки колеса складывается из скорости оси колеса \vec{V}_0 и скорости вращения относительно оси $\vec{V}_{\text{отн}}$:

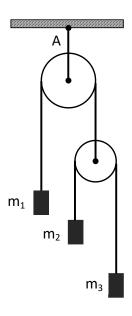
$$\vec{V} = \vec{V}_0 + \vec{V}_{\text{OTH}} \tag{1}$$

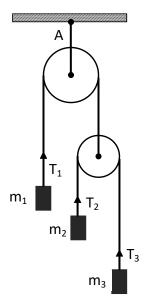
Так как колесо катится без проскальзывания, то скорость точки, касающейся поверхности земли, равна нулю. Для этой точки относительная скорость направлена противоположно скорости оси, а значит, модули этих скоростей равны друг другу.

Применяя правило сложения скоростей (1) для точки А, построим параллелограмм, который в силу отмеченного равенства модулей скоростей является ромбом. Диагонали ромба взаимно перпендикулярны и делят углы при вершинах пополам. Тогда

$$V = 2V_{\text{oth}} \cos \alpha$$

Ускорение точки A равно центростремительному ускорению точки при вращении относительно оси:


$$a = \frac{V_{\text{отн}}^2}{R} = \frac{2}{d} \left(\frac{V}{2 \cos \alpha} \right)^2 = 90 \text{ m/c}^2$$


Силу находим по второму закону Ньютона, пренебрегая действием силы тяжести F = ma = 0.81 H.

Примерная разбалловка

Записано правило сложения скоростей (1)	2
Показано, что $V_0 = V_{\text{отн}}$	3
Найдена скорость $V_{\text{отн}}$	3
Найлена сила	2.

10.3. В системе, изображенной на рисунке, второй груз массой $m_2 = 300$ г неподвижен относительно точки подвеса A, а третий груз массой m_3 движется с ускорением, очень близким к ускорению свободного падения g. С каким ускорением движется первый груз и какова его масса? Трение не учитывать, блоки и нити невесомые.

Возможное решение

Сила натяжения нити первого груза в два раза больше сил натяжения нитей второго и третьего грузов, поскольку подвижный блок невесомый:

$$T_2 = T_3 = T, T_1 = 2T.$$
 (1)

Пусть первый груз поднимается с ускорением a, тогда подвижный блок опускается с таким же ускорением вниз. Поскольку второй груз покоится, его ускорение относительно блока равно $a_{\text{отн}} = a$ и направлено вверх. Тогда ускорение третьего груза будет в два раза больше a, поскольку оно складывается из ускорения первого груза и ускорения относительно блока: g = 2a, отсюда ускорение первого груза $a = \frac{g}{2}$.

Запишем второй закон Ньютона:

$$2T - m_1 g = m_1 \frac{g}{2}$$
$$T - m_2 g = 0$$

Отсюда $m_1 = \frac{4}{3} m_2 = 400$ г.

Примерная разбалловка

Записано соотношение (1)2	
Определено ускорение первого груза	
Записаны законы Ньютона	
Найдена масса первого груза	

10.4. Мал да удал.

В сосуд с переохлажденной водой массой 100 г, имевшей температуру $t_0 = -5$ °C, бросили кристаллик льда массой 1 мг и температурой 0°C. Определите, сколько льда образуется в сосуде после установления теплового равновесия. Теплообменом с окружающей средой пренебречь. Удельная теплоемкость воды равна 4,2 кДж/(кг·К), удельная теплоемкость льда 2,1 кДж/(кг·К), удельная теплота плавления льда 330 кДж/кг.

Возможное решение

В сосуде начнется кристаллизация переохлажденной воды, конечная температура будет равна 0° С.

Количество тепла, которое получит вода, равно количеству теплоты, выделяющейся при образовании льда

$$c_{\scriptscriptstyle B} m_{\scriptscriptstyle B} (0 - t_0) = \lambda m_{\scriptscriptstyle J} \tag{1}$$

Отсюда

$$m_{_{\rm II}} = m_{_{\rm B}} \frac{{
m c}_{_{\rm B}}(0-t_0)}{\lambda} = 6.4~{
m f}$$

Примерная разбалловка

Указана конечная температура2
Записано уравнение теплового баланса4
Найдена масса льда

10.5. Странная схема.

Резисторы сопротивлением 1, 2, 3, Ом и резистор R_x , подключены к клеммам B и C источника постоянного напряжения, как показано на рисунке. Чему равно сопротивление резистора R_x и какой ток течет через амперметр A_1 , если ток через амперметр A_2 равен 5 A? Вольтметр показывает 10 B. Измерительные приборы считать идеальными.

Возможное решение

Обозначим $I_2 = 5$ A, U = 10 В.

Общее сопротивление схемы по закону Ома равно

$$R_{\text{общ}} = \frac{I}{IJ} = 2 \text{ Ом}$$

Так как амперметр A_1 идеальный, можно считать что средние резисторы соединены параллельно, резистор $R_{\rm x}$ соединен параллельно с резистором 1 Ом. Применяя формулы для параллельного и последовательного соединений сопротивлений, запишем общее сопротивление схемы:

$$R_{\text{общ}} = \frac{R_x * 1}{R_x + 1} + \frac{2 * 3}{2 + 3} = \frac{R_x}{R_x + 1} + \frac{6}{5} = 2 \text{ Ом}$$

Отсюда неизвестное сопротивление равно 4 Ом.

Сумма токов, текущих через резисторы 2 Ом и 3 Ом равна по условию 5 А. Напряжение на этих резисторах одинаково, поэтому отношение токов равно обратному отношению сопротивлений. Отсюда через резистор 2 Ом течет ток 3 А, а через резистор 3 Ом — ток 2 А. Рассуждая аналогично для соединённых параллельно резисторов 1 Ом и 4 Ом, находим ток через эти резисторы — соответственно 4 А и 1 А.

Сила тока, протекающего через амперметр A_1 , равна разности токов через резисторы 3 Ом и 4 Ом:

$$I_1 = i_3 - i_4 = 2A - 1 A = 1 A.$$

Определено общее сопротивление схемы1	
Определен тип соединения резисторов	2
Найдено сопротивление неизвестного резистора3	3
Найдена сила тока через амперметр A_1	4

11 класс

11.1. Невидимая преграда

Небольшая шайба скользит по гладкому льду с постоянной скоростью V=2 м/с. На пути шайбы встречается преграда, ударившись о которую шайба с той же скоростью движется в обратном направлении. На стробоскопической фотографии запечатлены посторонний предмет P, три положения шайбы, но преграда оказалась невидимой.

Определите по фотографии, на каком расстоянии от предмета P находилась преграданевидимка, если интервал времени между вспышками стробоскопа был равен t=0,1 с. Для измерения расстояний по фотографии воспользуйтесь линейкой.

Возможное решение.

Предположим, что A, B и C — три последовательные положения шайбы. В этом случае A, B соответствуют движению шайбы к преграде, а в C запечатлена шайба уже после столкновения. С помощью линейки выполним измерение расстояния AB:

$$AB = 39 \text{ }MM.$$

За время между вспышками стробоскопа шайба пролетает расстояние L=Vt. Отношение этого расстояния к длине отрезка AB на фотографии дает масштаб уменьшения:

$$M = \frac{Vt}{AB} = \frac{2 \cdot 0.1}{0.039} = 5.1$$

Если бы преграды не было, шайба оказалась бы в точке C^* такой что $BC^* = AB$:

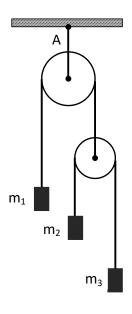
Преграда находится в точке E, делящей отрезок CC^* пополам. Измерим расстояние PE по фотографии и рассчитаем расстояние от точки P до преграды-невидимки:

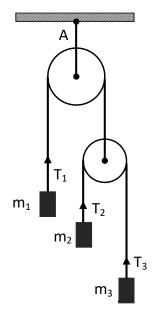
$$PE = 75 \text{ mm}, S = PE \cdot M = \frac{PE}{AB}Vt = 38 \text{ cm}.$$

Возможны другие варианты решения: например когда отразившись от преграды, шайба оказалась между точками A и B:

В этом случае:

$$AB = 50 \text{ mm}, M = 4.0, PE = 83 \text{ mm}, S = 33 \text{ cm}.$$


Внимание членов жюри: расстояния, измеренные по рисунку зависят от настроек принтера и могут отличаться от представленных выше.


Примерная разбалловка

Определен масштаб уменьшения фотографии1
Найдено положение преграды E на фотографии
Найдено реальное расстояние S до преграды2
Рассмотрено более одного варианта решения4

11.2. Неподвижный груз.

В системе, изображенной на рисунке, масса первого груза $m_1 = 80$ г, масса второго груза $m_2 = 50$ г. Какой величины должна быть масса третьего груза, чтобы второй груз был неподвижен относительно точки подвеса A? С каким ускорением в этом случае будут двигаться первый и третий грузы?

Возможное решение

Сила натяжения нити первого груза в два раза больше сил натяжения нитей второго и третьего грузов, поскольку подвижный блок невесомый:

$$T_2 = T_3 = T$$
, $T_1 = 2T$. (1)

Пусть первый груз поднимается с ускорением a, тогда подвижный блок опускается с таким же ускорением вниз. Поскольку второй груз покоится, его ускорение относительно блока равно $a_{\text{отн}} = a$ и направлено вверх. Тогда ускорение третьего груза будет в два раза больше a, поскольку оно складывается из ускорения первого груза и ускорения относительно блока:

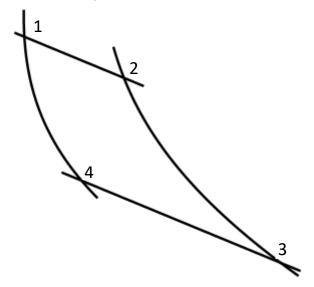
$$a_3 = 2a. (2)$$

Запишем второй закон Ньютона:

$$2T - m_1 g = m_1 a$$

$$T - m_2 g = 0$$

$$m_3 g - T = m_3 2a$$


Отсюда

$$m_3 = \frac{m_1 m_2}{3m_1 - 4m_2} = 100$$
 г.

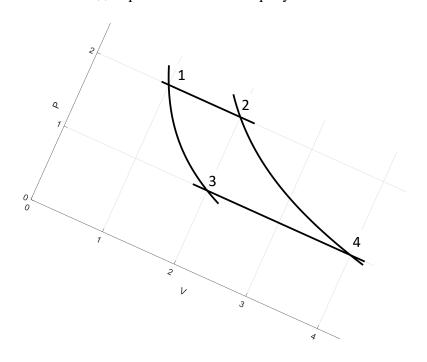
Записано соотношение (1)
Определено соотношение ускорений первого и третьего грузов (2)3
Записаны законы Ньютона
Найдена масса третьего груза

11.3. Потерянные оси.

С идеальным газом провели циклический процесс $1_2_3_4_1$, состоящий из двух изотерм и двух адиабат. Процесс был изображен на PV диаграмме (см рисунок), с которой со временем исчезли оси. Восстановите диаграмму. Известно, что объёмы в состояниях 2 и 4 были одинаковы, а в состояниях 1 и 3 отличались в 4 раза.

Возможное решение

Соединим точки 2 и 4, проведем через точки 1 и 3 линии, параллельные линии 2_4. Ось давлений должна быть параллельна этим линиям и находиться на расстоянии от точки 1, в четыре раза меньшем расстояния от точки 3.

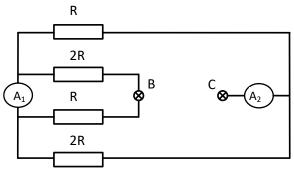

Запишем уравнение Менделеева-Клапейрона для изотермических процессов:

$$P_1V_1 = P_4V_4, P_2V_2 = P_3V_3. (1)$$

Учитывая соотношения объёмов, а также равенство давлений на изобарах, из соотношений (1) следует

$$P_2 = \sqrt{\frac{V_3}{V_1}} P_4$$
, отсюда $P_2 = 2P_4$ (2)

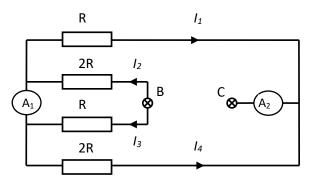
Восстановленная диаграмма показана на рисунке.



Примерная разбалловка

Записаны уравнения Менделеева-Клапейрона2
Найдено отношение давлений4
Построены оси диаграммы

11.4. Странная схема.


Четыре резистора, два из которых имеют сопротивление R, а другие два — сопротивление 2R, подключены к клеммам B и C источника постоянного напряжения, как показано на рисунке. Определите, какой ток течет через амперметр A_1 , если ток через амперметр A_2 равен 3 A? Амперметры считать идеальными.

Возможное решение

Так как амперметр A_1 идеальный, можно считать что средние резисторы соединены параллельно, верхний резистор соединен параллельно с нижним резистором.

Напряжение при параллельном соединении одинаково:

$$2Ri_2 = Ri_3$$
, w $2Ri_4 = Ri_1$ (1)

Сумма токов, текущих через средние резисторы, а также сумма токов через нижний и верхний равны силе тока в цепи I_2 , которую регистрирует амперметр A_2 :

$$i_2 + i_3 = I_2$$
, w $i_1 + i_4 = I_2$ (2)

Выражая токи из(1), подставим их в (2) и получим значения:

$$i_2 = \frac{1}{3}I_2, i_3 = \frac{2}{3}I_2, i_4 = \frac{1}{3}I_2, i_1 = \frac{2}{3}I_2$$
 (3)

Через амперметр A_1 течет ток, равный разности токов через резисторы:

$$i_3 - i_4 = I_1$$
, отсюда $I_1 = \frac{1}{3}I_2 = 1$ А.

Определен тип соединения резисторов	.2
Найдены токи через резисторы	.4
Найдена сила тока через амперметр A_1	.4

11.5. Он вылетел.

Протон влетает в область однородного магнитного поля с индукцией B=1 мТл перпендикулярно линиям индукции и границам области и вылетает из области, занятой полем, под углом 60° к направлению первоначального движения. Определите время движения протона в магнитном поле. Заряд протона $1,6\cdot10^{-19}$ Кл, масса протона $1,6\cdot10^{-27}$ кг.

Возможное решение

В магнитном поле на протон действует сила Лоренца, перпендикулярная скорости. Протон движется по окружности радиусом R. По второму закону Ньютона

$$qVB = m\frac{V^2}{R} \tag{1}$$

Угол, на который повернется протон при движении по окружности, равен углу, на который повернется вектор его скорости, то есть те же 60°. Поэтому время движения протона в магнитном поле равно 1/6 части периода:

$$t = \frac{60}{360}T = \frac{1}{6}T\tag{2}$$

Период вращения протона найдем из (1)

$$T = 2\pi \frac{m}{qB}$$

Окончательно

$$t = \frac{\pi}{3} \frac{m}{qB} = 10,9 \text{ мкс}$$

Записан второй закон Ньютона (1)	4
Определена часть периода (2)	4
Найлено время пвижения	2